If the tangents of the angles A and B of a triangle ABC satisfy the equation abx2−c2x+ab=0, then
tanA+tanB=c2ab
And
tanA.tanB=1
Or
1−tanA.tanB=0
Implies
tan(A+B)=∞
Or
C=π2
Hence
tanA=cotB
Hence tanA=ab then tanB=ba.
Now
sin2A+sin2B+sin2C
=1+sin2A+sin2B
=1+sin2A+cos2A ... (C=900).
=2