The correct options are
A tanA=ab
B tanB=ba
C cosC=0
D sin2A+sin2B+sin2C=2
From the given equation, we get
tanA+tanB=c2ab and tanAtanB=1
tan(A+B)=tanA+tanB1−tanAtanB
⇒A+B=π2 and C=π2
Therefore triangle ABC is right angled at C
Hence tanA=ab,tanB=ba,cosC=0,
sinA=ac,sinB=bc,sinC=1
sin2A+sin2B+sin2C=a2c2+b2c2+1
=a2+b2c2+1=1+1=2