Since tan A , tan B,
tan C are in A.P., we have
tanA+tanC=2tanB ....(1)
or x+tanC=2tanB ......(2)
Where x=tanA.
[Observe that if tan A, tan B, tan C are in A.P. then tan A
is either the greatest of the least amongst tan A , tan B and tan C].
Now in a triangle ABC, we always have
tan A tan B tan C = tan A + tan B + tan C
.......(3)
∴ From (1), (2) and (3), we obtain
x tan B(2tan B -x)= 2 tan B+ tan B
or x(2tan B- x)=3 [∵tanB≠0]
∴tanB=(3+x2)/2x.
and tanC=2tanB−x=(3+x2)/x−x=3/x.
Now in a△ABC , we have
asinA=bsinB=csinC
⇒a2sin62A=b2sin2B=c2sin2C
Hence a2:b2:c2=sin2A:sin2B:sin2C
But tanA=x⇒sinA=x√1+x2
⇒sin2A=x2/(1+x2)
andtanB=(3+x2)/2x
⇒sin2B=(3+x2)2/[(3+x2)2+4x2]
=(3+x2)2/(1+x2)(9+x2)
and tanC=3/x⇒sinC=3/√(9+x2)
⇒sin2C=9/(9+x2)
∴a2:b2:c2::x21+x2:(3+x2)2(1+x2)(9+x2):9x2+9::x2(9+x2):(3+x2)2:9(1+x2).
Ambiguous case: When two sides say a and b are given and one
angle opposite to these sides say A is given, then by sine rule asinA=bsinB
∴sinB=basinA=k, say.
There will be two values of angle B say B1 and B2
which will satisfy the equation sin B =k.
Evidently these two values are supplementary i.e. if
B1=α then B2=π−α i.e. B1+B2=π