If the θ lies in the second quadrant, then the value of √(1−sinθ1+sinθ)+√(1+sinθ1−sinθ) is
Consider the given expression.
√(1−sinθ)√(1+sinθ)+√(1+sinθ)√(1−sinθ)
=(1−sinθ)+(1+sinθ)√12−sin2θ
=1−sinθ+1+sinθ√12−sin2θ
=2√1−sin2θ
=2√cos2θ
=2cosθ
=2×1cosθ since, secθ=1cosθ
=2secθ
If θ lies in second quadrant then the value
=−2secθ
Hence , the value is −2secθ.