If the three co-terminous sides of a tetrahedron is given as (^i+2^j+4^k),(2^i+3^j−^k) and (−3^i+^j+^k). The volume (in cubic units) of above tetrahedron is V, then value of 3V is
Open in App
Solution
Let sides of tetrahedron are →a,→b,→c
And,
Given: →a=(^i+2^j+4^k),→b=(2^i+3^j−^k),→c=(−3^i+^j+^k) ∴ Volume of tetrahedron =16|[→a→b→c]|=16∣∣
∣∣∣∣
∣∣12423−1−311∣∣
∣∣∣∣
∣∣=16|(1(3+1)−2(2−3)+4(2+9))|=V=506=253cubic units.