A(−3,−2,0) B(3,−3,1) C(2,0,2)
same ABCD is a parallelogram
Dx=Ax+Cx+Bx
⇒ D=((−3+5−3), (−2+10.(9)),D(2,1))
D=(−1,1,1)
angle between →AC and →BC:
→AC=→OC−→OA=(5^i+2^k)−(−3^i−2^j)
→AC=8^i+2^j+2^k
→BD=→OD−→OB=(−^i+^j+^k)−(3^i−3^j+^k)
=(4^i+4^j)
|→AC+→BD|=(8^i+2^j+2^k)+(−4^i+4^j)
=(4^i−^j+2^k)
(→AC+→BD)2=|→AC|2+|→BD|2+2|AC||→BD|cos(→AC, →BD)
|AC|=√64+4+4=√72
|BD|=√16+16=−√32
|→AC+→BD|=√16+36+7=√56
(√56)2=(√72)2+(√32)2+2√(32)(72)cosθ
56=72+32+2√(64)(36)cosθ
−48=2×8×6cosθ
cosθ=−1/2
θ=120o