If the two circles x2+y2+2g1x+2f1y=0&x2+y2+2g2x+2f2y=0 touch each then
Since the 2 circles touch each other
C1C2=r1±r2
⟹√(g1–g2)2+(f1–f2)2=√g21+f21±√g22+f22
−2g1g2−2f1f2=±2(√g21+f21)(√g22+f22)
(g1g2)2+(f1f2)2+2g1g2f1f2=(g1g2)2+(f1f2)2+(g1f2)2+(f1g2)2
2=g1f2g2f1+g2f1g1f2
Let g1f2g2f1=a
⟹2=a+1a⟹a2+−2a+1=0
⟹a=1⟹g1f2g2f1=1
f1g1=f2g2