The correct option is B α2br−qc=−αar−pc=1aq−pb
Given: ax2+bx+c=0⋯(i)
px2+qx+r=0⋯(ii) have a root "α" in common.
Now, For two quadratic equations a1x2+b1x+c1=0⋯(A) & a2x2+b2x+c2=0⋯(B) to have exactly one root α in common:
α2b1c2−b2c1=−αa1c2−a2c1=1a1b2−a2b1
Now, comaring (i) with (A) and (ii) with (B), we get:
a1=a;b1=b;c1=c;a2=p,b2=q;c2=r
Thus, we get:
α2br−qc=−αar−pc=1aq−pb