The correct option is A (0, 2√3) or (3, - √3)
LetthepointsbeP=(p,q),Q=(x1,y1)=(0,0)andR=(x2,y2)=(3,√3).∵TheyareverticesofanequilateralΔ,∴PQ=QR=PRSoPQ=√(x1−p)2+(y1−q)2=√(0−p)2+(0−q)2=√p2+q2,QR=√(x2−x1)2+(y2−y1)2=√(3−0)2+(√3−0)2=2√3andPR=√(x2−p)2+(y2−q)2=√(3−p)2+(√3−q)2=√p2++q2−6p−2√3q+12∴PQ=QR⟹√p2+q2=2√3⟹p2+q2=12........(i)AgainQR=PR⟹√(3−p)2+(√3−q)2=2√3⟹p2+q2−6p−2√3q+12=12p2+q2−6p−2√3q=0............(ii)Substitutingp2+q2=12from(i)weget3p+√3q=6⟹q=6−3p√3........(iii)Puttingthisvalueofqin(i)wehavep2+(6−3p√3)2=12⟹12p2−36p=0⟹p=(0,3)Puttingthesevaluesofpin(iii)wegetq=(2√3,−√3)∴P=(0,2√3),(3,−√3)AnsOptionA