IF the two vertices of an equilateral triangle be (0,0) and (3,√3 ) , then the co-ordinates of third vertex are
Given that, Two vertices of an equilateral triangle are (0,0) and (3,√3)
Let the third vertex of the equilateral triangle be (x,y)
Distance between (0,0) and(x,y) =Distance between(0,0) and(3,√3) =Distance between(x,y)and (3,√3).
√x2+y2=√(x−3)2+(y−√3)2
x2+y2=(x−3)2+(y−√3)2
x2+y2=12
x2+9−6x+y2+3−2√3y=12
24−6x−2√3y=12
−6x−2√3y=−12
6x+2√3y=12
3x+√3y=6
x=(6−√3)3
⇒[6−√3y3]3+y2=12
⇒(36+3y2−12√3y)9+y2=12
⇒36+3y2−12√3y+9y2=108
⇒−12√3y+12y2−72=0
⇒(y−2√3)(y+√3)=0
⇒y=2√3or−√3
ify=2√3,x=(6−6)3=0
ify=−√3,x=(6+3)3=3
So, the third vertex of the equilateral triangle =(0,2√3) or (3,−√3).