wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the value of 2100sin(π100)sin(2π100)...sin(99100π) is 10k, then find the value of k.

Open in App
Solution

100th roots of unity are α0,α1,....α99
where αj=cos(2πj100)+isin(2πj100)
Thus (xα1)...(xα99)=x99+...+x+1
Putting x=1
(1α1)(1α2)...(1a99)=100(1a1)(1¯¯¯¯¯¯α2)...(1¯¯¯¯¯¯¯¯α99)=100(1α1)(1¯¯¯¯¯¯α1)(1α2)(1¯¯¯¯¯¯α2)...(1α99)(1¯¯¯¯¯¯¯a99)=104
But (1ak)(1¯¯¯¯¯¯αk)=2(1cos2kπ100)=22sin2(kπ100)
Thus, 2198sin2(π100)...sin2(99π100)=104
299sin(π100)...sin(99π100)=100=102
Hence, k=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon