If the value of 2100sin(π100)sin(2π100)...sin(99100π) is 10k, then find the value of k.
Open in App
Solution
100th roots of unity are α0,α1,....α99 where αj=cos(2πj100)+isin(2πj100) Thus (x−α1)...(x−α99)=x99+...+x+1 Putting x=1 (1−α1)(1−α2)...(1−a99)=100⇒(1−a1)(1−¯¯¯¯¯¯α2)...(1−¯¯¯¯¯¯¯¯α99)=100∴(1−α1)(1−¯¯¯¯¯¯α1)(1−α2)(1−¯¯¯¯¯¯α2)...(1−α99)(1−¯¯¯¯¯¯¯a99)=104 But (1−ak)(1−¯¯¯¯¯¯αk)=2(1−cos2kπ100)=22sin2(kπ100) Thus, 2198sin2(π100)...sin2(99π100)=104 ⇒299sin(π100)...sin(99π100)=100=102