The correct option is B −8
Given : Δ=∣∣
∣
∣∣n2(n+1)2(n+2)2(n+1)2(n+2)2(n+3)2(n+2)2(n+3)2(n+4)2∣∣
∣
∣∣
(as, the above determinant is true for all n∈N)
put n=1 in the above determinant,
⇒Δ=∣∣
∣∣149491691625∣∣
∣∣
expanding along R1,
⇒Δ=1(225−256)−4(100−144)+9(64−81) =−8
∴p=−8