Given : Δ=∣∣
∣
∣∣a2+a3−3a2a3771664a4+a6−3a4a6∣∣
∣
∣∣
Applying C1→C1−(C2+C3), we get
Δ=∣∣
∣
∣∣−3a2a3−34243−3(a2)2(a2)3∣∣
∣
∣∣=0
Taking (−3) common from C1, we get
⇒(−3)∣∣
∣
∣∣1a2a3142431(a2)2(a2)3∣∣
∣
∣∣=0
⇒−3(a−4)(4−a2)(a2−a)(4a+4a2+a3)=0∵∣∣
∣
∣∣1a2a31b2b31c2c3∣∣
∣
∣∣=(a−b)(b−c)(c−a)(ab+bc+ca)⇒a2(a−4)(4−a2)(a−1)(a2+4a+4)=0⇒a2(a−1)(2−a)(2+a)(a+2)2(a−4)=0
So, value(s) of a=−2,0,1,2,4