wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the value of determinant Δ=∣ ∣ ∣a2+a33a2a3771664a4+a63a4a6∣ ∣ ∣ is zero. Then the number of different value(s) of a is

Open in App
Solution

Given : Δ=∣ ∣ ∣a2+a33a2a3771664a4+a63a4a6∣ ∣ ∣
Applying C1C1(C2+C3), we get

Δ=∣ ∣ ∣3a2a3342433(a2)2(a2)3∣ ∣ ∣=0
Taking (3) common from C1, we get
(3)∣ ∣ ∣1a2a3142431(a2)2(a2)3∣ ∣ ∣=0
3(a4)(4a2)(a2a)(4a+4a2+a3)=0∣ ∣ ∣1a2a31b2b31c2c3∣ ∣ ∣=(ab)(bc)(ca)(ab+bc+ca)a2(a4)(4a2)(a1)(a2+4a+4)=0a2(a1)(2a)(2+a)(a+2)2(a4)=0
So, value(s) of a=2,0,1,2,4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon