limx→0xnsinnxxn−sinnx=limx→0x2nsinnxxnxn−sinnx
=limx→0x2nxn−sinnx
Now, using expansion we have:
=limx→0x2nxn−(x−x33!+x55!−⋯)n
=limx→0xn1−(1−x23!+x45!−⋯)n
Now, using binomial expansion, we have:
=limx→0xnn(x23!−x45!+⋯)−n(n−1)2⋅(x23!−x45!+⋯)2⋯
∴ For n=2 limit exist.