L=limx→0(2−cosx√cos2x )⎛⎝x+2x2⎞⎠
of the form 1∞
L=elimx→0(2−cosx√cos2x−1)×(x+2x2) ⋯(1)
L=elimx→0(1−cosx√cos2x)x2×(x+2)
Now,
limx→0(1−cosx√cos2x)x2
By L' hospital rule
⇒limx→0sinx√cos2x−cosx×12√cos2x×(−2sin2x)2x
⇒limx→0sinxcos2x+sin2xcosx2x√cos2x
⇒limx→0(sinxcos2x2x√cos2x)+(sin2xcosx2x√cos2x)
⇒12+1=32
putting in equation (1)
L=elimx→032×(x+2)
L=e32×2=e3
∴ a=3