The correct option is
C 2Given Ψ(x)=f(g(x)) ...(1)
f(mx+ny)=(f(x))m(f(x))n∀x,y,m,n∈R ...(2)
f′(0)=−ln2f(0) ...(3)
g(x) is periodic function given by g(x)=|x−1|−12;0≤x≤2 ...(4)
h(x)=g(x)+sinπx is periodic with period 2
⇒h(x+2)=h(x)⇒g(x+2)+sinπ(x+2)=g(x)+sinπx
⇒g(x+2)+sinπx=g(x)+sinπx⇒g(x+2)=g(x)
⇒g(x) must be a periodic function with period 2
∴g(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩|x−1|−12;0≤x≤2|x−3|−12;2≤x≤4|x−5|−12;4≤x≤6andsoon...
Now, f(mx+hy)=(f(x))m(f(y))n ∀x,y,m,n∈R
for m=n=0
f(0)=1; for m=n=1;f(x+y)=f(x).f(y)
∴f′(a)=limh→0f(x+h)−f(x)h=limh→0f(x).f(h)−f(x)h
=limh→0f(x)[f(h)−1h]=limh→0f(x)[f(h)−f(0)h]
(∵f(0)=1)
=f(x)f′(0)=f(x)(ln2.f(0))=(−ln2)(f(x))
∴f′(x)f(x)=−ln2⇒lnf(x)+C=−(ln2)x⇒lnf(x)+xln2=−C⇒ln2x.f(x)=−C
for x=0,ln1=−C⇒C=0
∴ln2xf(x)=0⇒2xf(x)=1⇒f(x)=2−x
⇒Ψ(x)=(f(f(x)))=2−g(x)=212−|x−1|=√2.2−|x−1|
∫a+baΨ(x)dx=∫a+ba2−g(x)dx
∵∫a+baΨ(x)dx has same value '' a∈R as Ψ(x) is periodic with period 2.
∴b=2