If the value of integral ∫sin4xcos2xdx=xp+sin2xq+sin4xr+sin6xs+C, for fixed constants p,q,r and s. Then the value of p+q+r+s4=
(where C is integration constant)
Open in App
Solution
Let I=∫sin4xcos2xdx=14∫sin2xsin22xdx=116∫(1−cos2x)(1−cos4x)dx(∵2sin2x=1−cos2x)=116∫(1−cos2x−cos4x+cos2xcos4x)dx=116∫(1−cos2x−cos4x+cos6x2+cos2x2)(∵2cosacosb=cos(a+b)+cos(a−b))=116[x−sin2x4−sin4x4+sin6x12]+C ⇒p+q+r+s4=16(1−4−4+12)4=20