If the value of π/2∫−π/2x21+tanx+√1+tan2xdx is π3a. Then a=
Open in App
Solution
I=π/2∫−π/2x21+tanx+√1+tan2xdx
Using the property, b∫af(x)dx=b∫af(a+b−x)dx I=π/2∫−π/2x21−tanx+√1+tan2xdxOn adding these two integrals we get, 2I=π/2∫−π/2x2(2+2√1+tan2x)(1+√1+tan2x)2−tan2xdx2I=π/2∫−π/2x2dx=[x33]π/2−π/22I=13×2π38⇒I=π324 ⇒a=24