The correct option is A 0
Given,
Sin A=1√2
Sin A=oppositehypotenuse
Drawing a Δ ABC,
Using pythagoras theorem,
AC2=AB2+BC2
(√2k)2=AB2+(1k)2
2k2=AB2+1k2
2k2−1k2=AB2
1k=AB
AB=1k
Now,
Cos A=adjacenthypotenuse=1√2
tan A=Sin ACos A=1√21√2=1
cot A=Cos ASin A=1√21√2=1
∴ tan A−cot A=1−1 =0