If the value of √1+cosα+√1+cos2α+√1+cos3α+⋯+to n terms is ksinnα4sinα4cos{(n+1)α4}, then the value of k4 is (where 0<nα<π/2,n∈N)
Open in App
Solution
√1+cosα+√1+cos2α+√1+cos3α+⋯+to n terms=√2cos2α2+√2cos2α+√2cos23α2+⋯+to n terms=√2[cosα2+cosα+cos3α2+⋯+to n terms][∵0<nα<π/2]=√2sinnα4sinα4cos{α2+(n−1)α4}=√2sinnα4sinα4cos{(n+1)α4}⇒k=√2∴k4=4