wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the value of 1+cosα+1+cos2α+1+cos3α++to n terms is ksinnα4sinα4cos{(n+1)α4}, then the value of k4 is
(where 0<nα<π/2,nN)

Open in App
Solution

1+cosα+1+cos2α+1+cos3α++to n terms=2cos2α2+2cos2α+2cos23α2++to n terms=2[cosα2+cosα+cos3α2++to n terms] [0<nα<π/2]=2sinnα4sinα4cos{α2+(n1)α4}=2sinnα4sinα4cos{(n+1)α4}k=2k4=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon