wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the value of the definite integral
11cot1(11x2)cot1⎜ ⎜x1(x2)|x|⎟ ⎟dx=π2(ab)c, where a,b,cN in their lowest form, then the value of (a+b+c) is

Open in App
Solution

Let I=11cot1(11x2)cot1⎜ ⎜x1(x2)|x|⎟ ⎟dx (1)

By using baf(x)dx=baf(a+bx)dx, we get
I=11cot1(11x2)cot1⎜ ⎜x1(x2)|x|⎟ ⎟I=11cot1(11x2)⎜ ⎜πcot1x1(x2)|x|⎟ ⎟dx (2)

Adding (1) and (2), we get
2I=11πcot1(11x2)dx2I=11πtan11x2dx2I=2π10tan11x2dx
(As tan11x2 is even function)
I=π101tan11x2dx

By integration by parts,
I=π[tan11x2x]1010x1+1x2x1x2dx
I=π10x2(2x2)1x2dx

Let, x=sinθdx=cosθdθ
I=ππ/20sin2θ(2sin2θ)dθ
I=ππ/202sin2θ22sin2θdθ
I=2ππ/20dθ2sin2θπ22
I=2ππ/20sec2θdθ2+2tan2θtan2θπ22
I=2ππ/20sec2θdθ2+tan2θπ22

Putting tanθ=t,
I=2π0dt2+t2π22
I=2π[12tan1t2]0π22
I=π22π22=π2(21)2
Now, I=π2(ab)c (given)
a=2,b=1 and c=4
a+b+c=7

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon