Let I=1∫−1cot−1(1√1−x2)⋅cot−1⎛⎜
⎜⎝x√1−(x2)|x|⎞⎟
⎟⎠dx …(1)
By using b∫af(x)dx=b∫af(a+b−x)dx, we get
I=1∫−1cot−1(1√1−x2)cot−1⎛⎜
⎜⎝−x√1−(x2)|x|⎞⎟
⎟⎠⇒I=1∫−1cot−1(1√1−x2)⎛⎜
⎜⎝π−cot−1x√1−(x2)|x|⎞⎟
⎟⎠dx …(2)
Adding (1) and (2), we get
2I=1∫−1πcot−1(1√1−x2)dx⇒2I=1∫−1πtan−1√1−x2dx⇒2I=2π1∫0tan−1√1−x2dx
(As tan−1√1−x2 is even function)
⇒I=π1∫01⋅tan−1√1−x2dx
By integration by parts,
I=π⎡⎢⎣[tan−1√1−x2⋅x]10−1∫0x1+1−x2⋅−x√1−x2dx⎤⎥⎦
⇒I=π1∫0x2(2−x2)√1−x2dx
Let, x=sinθ⇒dx=cosθdθ
⇒I=ππ/2∫0sin2θ(2−sin2θ)dθ
⇒I=−ππ/2∫02−sin2θ−22−sin2θdθ
∴I=2ππ/2∫0dθ2−sin2θ−π22
⇒I=2ππ/2∫0sec2θdθ2+2tan2θ−tan2θ−π22
⇒I=2ππ/2∫0sec2θdθ2+tan2θ−π22
Putting tanθ=t,
I=2π∞∫0dt2+t2−π22
⇒I=2π[1√2tan−1t√2]∞0−π22
⇒I=π2√2−π22=π2(√2−1)2
Now, I=π2(√a−√b)√c (given)
⇒a=2,b=1 and c=4
⇒a+b+c=7