If the value of the integral ∫21ex2dx is a, then the value of ∫e4e√lnxdx is
A
e4−e−α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2e4−e−α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2(e4−e)−α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2e4−1−α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2e4−e−α Given ∫21e2xdx=α Now l=∫e4e1⋅√lnxdx=[(x√lnx)e40−∫e4ex2x√lnxdx] l1=∫e4edx2√lnx[x=et4⇒dx=et22tdt] =∫21et22t⋅2tdt=∫21er2dt=α∴l=2e4−e−α