C1=(1,1) and r1=1
C2=(9,1) and r2=2
L≡3x+4y−α=0
Distance of line from Ci should be greater than ri (i=1,2)
⇒∣∣∣7−α5∣∣∣>1
⇒|α−7|>5
⇒α∈(−∞,2)∪(12,∞)⋯(i)
Also,
∣∣∣27+4−α5∣∣∣>2⇒|α−31|>10⇒α∈(−∞,21)∪(41,∞)⋯(ii)
Further C1 and C2 should lie on opposite sides w.r.t given lines
⇒(3+4−α)⋅(27+4−α)<0⇒(α−7)(α−31)<0⇒α∈(7,31)⋯(iii)
From (i),(ii) and (iii)
α∈(12,21)
Sum of all the integral values of α
=12+13+14+⋯+21=102[12+21]=165