If the variance of 10 natural numbers 1,1,1,…,1,k is less than 10, then the maximum possible value of k is
Open in App
Solution
σ2=∑x2n−(∑xn)2 ⇒σ2=9+k210−(9+k10)2<10 ⇒10(9+k2)−(81+k2+18k)<1000 ⇒90+10k2−k2−18k−81<1000 ⇒9k2−18k+9<1000 ⇒(k−1)2<10009 ⇒k−1<10√103 ⇒k<10√103+1 ∴ Maximum possible integral value of k is 11.