The correct option is A 1|b|2b+1|a×b|2a×b
We have a⊥b⇒a,b,a×b are linearly independent.
v can be expressed uniquely in terms of a,b and a×b.
Let v=xa+yb+za×b ...(i)
Given that, :a.b=0,v.a=0,v.b=1,[v,a,b]=1
∴v.a=xa2 or xa2=0 or x=0 ...(ii)
v.b=xv.b+yb2+zb.(a×b)
⇒yb2=1 or y=1b2 ...(iii)
v.a×b=x.0+y.0+z|a×b|2⇒z|a×b|2
⇒z=1|a×b|2 ...(iv)
From (1),(2),(3) and (4), we get
v=1|b|2b+1|a×b|2a×b.