The correct option is
C −115(11^i+10^j+2^k)consider the problem
Let unit vector
^c=x^i+y^j+z^k
therefore,
x2+y2+z2=1 ---- (1) (since ^c is unit vector)
And unit vector along 3^i+4^j
3^i+4^j=3^i+4^j√32+42=3^i+4^j√9+16=3^i+4^j√25=3^i+4^j5
And bisectors of them two is
r=t(^a+^b)
r=t(x^i+y^j+z^k+3^i+4^j5)
r=t5((5x+3)^i+(5y+4)^j+5z^k) ----- (2)
But the bisector is given by −^i−^k−^z ---- (3)
On comparing (2) and (3).
t5(5x+3)=−1→x=−5+3t5t
t5(5y+4)=1→y=5−4t5t
t5(5z)=−1→z=−1t
Putting the values in first equation
(−5+3t5t)2+(5−4t5t)2+(−1t)2=1
25t2−10t+75=25t2
t=7.5
Thus,
x=−5+3t5t⇒=−5+3×7.55×7.5=−1115
y=5−4t5t⇒y=5−4×7.55×7.5
z=−1t=−17.5=−215
Hence unit vector
^c=−1115^i−1015^j−215^k^c=−115(11^i+10^j+2^k)
Hence, Option C is the correct answer.