If two vectors are perpendicular, then their dot product is zero
⇒(3→p+→q).(5→p−3→q)=0 (given)
⇒15p2−9→p.→q+5→p.→q−3q2=0
⇒15p2−4→p.→q−3q2=0 ....(1)
⇒(2→p+→q).(4→p−2→q)=0 (given)
⇒8p2−4→p.→q+4→p.→q−2q2=0
⇒8p2=2q2
⇒4p2=q2 ...(2)
⇒2|p|=|q| ...(3)
Substituting (2) in (1), we get
⇒15p2−4→p.→q−3(4p2)=0
⇒15p2−4→p.→q−12p2=0
⇒3p2−4→p.→q=0
⇒→p.→q=3p24 ...(4)
We know that ,→p.→q=|p||q|cos(p,q)
⇒cos(p,q)=→p.→q|p||q| ...(5)
Substituting (3) and (4) in (5) we get,
⇒cos(p,q)=3p242|p||p|
⇒cos(p,q)=3p28p2
⇒cos(p,q)=38
Therefore angle between →p and →q is cos−138