Given: ∣∣
∣∣a111b111c∣∣
∣∣ are coplanar
⇒∣∣
∣∣a111b111c∣∣
∣∣=0
R2→R2−R1,R3→R3−R1
⇒∣∣
∣∣a111−ab−101−a0c−1∣∣
∣∣=0
Divide C1,by (1−a), C2 by (1−b),and C3,by (1−c)
⇒∣∣
∣
∣
∣∣a1−a−11−b−11−c110101∣∣
∣
∣
∣∣=0
⇒a1−a(1−0)−−11−b(1−0)+(−11−c)(0−1)=0
⇒a1−a+11−b+11−c=0
Add 1 to both sides, we get
⇒a1−a+1+11−b+11−c=1
⇒a+1−a1−a+11−b+11−c=1
⇒11−a+11−b+11−c=1