If the vectors (−bc,b2+bc,c2+bc),(a2+ac,−ac,c2+ac) and (a2+ab,b2+ab,−ab) are coplanar, where none of a, b or c is zero, then
A
a2+b2+c2=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
bc+ca+ab=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a+b+c=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a2+b2+c2=bc+ca+ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bbc+ca+ab=0 (−bc,b2+bc,c2+bc),(a2+ac,−ac,c2+ac) and (a2+ab,b2+ab,−ab) are co-planar when ∣∣
∣
∣∣−bcb2+bcc2+bca2+ac−acb2+aca2+abb2+ab−ab∣∣
∣
∣∣=0⇒∣∣
∣
∣∣−bcb2c2a2−acc2a2b2−ab∣∣
∣
∣∣+∣∣
∣∣0bcbcac0acabab0∣∣
∣∣=0⇒bc+ac+ab=0