1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Test for Coplanarity
If the vector...
Question
If the vectors
→
p
=
a
^
i
+
^
j
+
^
k
,
→
q
=
^
i
+
b
^
j
+
^
k
,
→
r
=
^
i
+
^
j
+
c
^
k
are coplanar, then for
a
,
b
,
c
≠
1
show that
1
1
−
a
+
1
1
−
b
+
1
1
−
c
=
1
Open in App
Solution
Given,
→
p
,
→
q
,
→
r
coplanar
=
∣
∣ ∣
∣
a
1
1
1
b
1
1
1
c
∣
∣ ∣
∣
= 0
c
1
+
c
1
−
c
2
,
c
2
+
c
2
−
c
3
=
∣
∣ ∣
∣
a
−
1
0
1
1
−
b
b
−
1
1
0
1
−
c
c
∣
∣ ∣
∣
= 0
=
−
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
+
(
1
−
a
)
(
1
−
b
)
+
(
1
−
a
)
(
1
−
c
)
+
(
1
−
b
)
(
1
−
c
)
=
0
Dividing
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
=
1
1
−
a
+
1
1
−
b
+
1
1
−
c
−
1
=
0
=
1
1
−
a
+
1
1
−
b
+
1
1
−
c
=
1
Suggest Corrections
0
Similar questions
Q.
If the vectors
a
^
i
+
^
j
+
^
k
,
^
i
+
b
^
j
+
^
k
,
^
i
+
^
j
+
c
^
k
(
a
≠
b
≠
c
≠
1
)
are coplanar, then value of
1
1
−
a
+
1
1
−
b
+
1
1
−
c
=
Q.
If
a
^
i
+
^
j
+
^
k
,
^
i
+
b
^
j
+
^
k
,
^
i
+
^
j
+
c
^
k
are coplanar then
1
1
−
a
+
1
1
−
b
+
1
1
−
c
=
Q.
If the vectors
a
^
i
+
^
j
+
^
k
,
^
i
+
b
^
j
+
^
k
and
^
i
+
^
j
+
c
^
k
,
(
a
≠
b
≠
c
≠
1
)
are coplanar, then find the value of
1
1
−
a
+
1
1
−
b
+
1
1
−
c
.
Q.
If the vectors
a
^
i
+
^
j
+
^
k
,
^
i
+
b
^
j
+
^
k
and
^
i
+
^
j
+
c
^
k
(
a
≠
b
≠
c
≠
1
)
are coplanar , then the value of
1
1
−
a
+
1
1
−
b
+
1
1
−
c
is equal to
Q.
If the vectors
a
^
i
+
^
j
+
^
k
,
^
i
+
b
^
j
+
^
k
and
^
i
+
^
j
+
c
^
k
are coplanar
(
a
≠
b
≠
c
≠
1
)
, then the value of
a
b
c
−
(
a
+
b
+
c
)
=
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Application of Vectors - Planes
MATHEMATICS
Watch in App
Explore more
Test for Coplanarity
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app