wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the vectors (sec2 A) i^+j^+k^, i^+sec2 Bj^+k^, i^+j^+sec2 Ck^ are coplanar, then find the value of cosec2 A + cosec2 B + cosec2 C.

Open in App
Solution

Let: a=sec2Ai^+j^+k^, b=i^+sec2Bj^+k^ and c=i^+j^+sec2 Ck^We know that three vectors are coplanar iff their scaler triple product is zero. i.e., a b c=0Here, a b c=0sec2A111sec2B111sec2 C=0 sec2Asec2B×sec2 C-1-1sec2 C-1+11-sec2B=0sec2A sec2B sec2C-sec2A-sec2C+1+1-sec2B=01+tan2A 1+tan2B 1+tan2C-1+tan2A-1+tan2C+1+1-1+tan2B=0

1+tan2A+tan2B+tan2C+tan2A tan2B+tan2B tan2C+tan2C tan2A+tan2A tan2B tan2C-1-tan2A-1-tan2C+1+1-1-tan2B=0tan2A tan2B+tan2B tan2C+tan2C tan2A+tan2A tan2B tan2C=0tan2A tan2B+tan2B tan2C+tan2C tan2A=-tan2A tan2B tan2Ctan2A tan2B+tan2B tan2C+tan2C tan2Atan2A tan2B tan2C=-1cot2C+cot2A+cot2B=-1cosec2C-1+cosec2A-1+cosec2B-1=-1 cosec2A+cosec2B+cosec2C=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon