The correct option is
A FA2V−4
Step 1: Dimension of Young's Modulus Y, Force F, Area A and Velocity V
We know that,
Velocity V=Distancetime=LT−1
Acceleration A=Change in velocitytime=LT−2
Force F=mass×acceleration=MLT−2
Youngs Modulus Y=F/AΔl/l=MLT−2L2LL=ML−1T−2
Step 2: Finding Y in terms of F, A and V
If Force F, Area A and velocity V are taken as fundamental quantities, so Youngs Modulus Y can be expressed in terms of above as follows:
Let,
Y=FaAbVc ....(1)
Putting their dimensions in above equation
⇒ ML−1T−2=[MLT−2]a [LT−2]b [LT−1]c
⇒ ML−1T−2=Ma L(a+b+c) T(−2a−2b−c)
Comparing powers of M, L & T in LHS and RHS in above equation, we get:
a=1,
−1=a+b+c ⇒ −1=1+b+c ⇒ b+c=−2 ....(2)
−2=−2a−2b−c ⇒ −2=−2−2b−c ⇒ c=−2b
So, Equation (2) ⇒ b−2b=−2 ⇒ b=2
⇒ c=−2b=−4
Therefore, putting values of a, b and c in Equation (1), we get:
Y=F A2 V−4
Hence Option A is correct