If the vertices A, B, C of a triangle ABC have position vectors (1, 2, 3), (-1, 0, 0), (0, 1, 2) respectively then find ∠ABC (∠ABC is the angle between the vectors BA and BC).
We are given the points A(1,2,3), B(-1,0,0) and C(0,1,2)
Also, it is given that ∠ABC is the angle between the vectors BA and BC.
Here, BA = PV of A - PV of B =(^i+2^j+3^k)−(−^i+0^j+0^k)
=[^i−(−^i)+(2^j−0)+(3^k−0)]=2^i+2^j+3^k
|BA|=√(2)2+(2)2+(3)2=√4+4+9=√17
BC = PV of C - PV of B
=(0^i+1^j+2^k)−(−^i+0^j+0^k)=[0−(−^i)+(1^j−0)+(2^k−0)]
=^i+^j+2^k
|BC|=√(1)2+(1)2+(2)2=√1+1+4=√6
Now, BA.BC =(2^i+2^j+3^k).(^i+^j+2^k)=2×1+2×1+3×2=10
cos θ=BA.BC|BA||BC|⇒cos(∠ABC)=10√17√6⇒∠ABC=cos−1(10√102)