The correct options are
A Coordinates of the excentre opposite to vertex A is (2+√3,7)
C Coordinates of the excentre opposite to vertex C is (2−√3,5)
D The area of △ABC is √3 sq. units
Given vertices of the triangle are A(2,4),B(2,6) and C(2+√3,5)
Now, finding the side lengths of the triangle,
a=BC=√(√3)2+12=2 units
b=AC=√(√3)2+12=2 units
c=AB=√02+22=2 units
So, △ABC is an equilateral.
Now, we know that
Excentre opposite to vertex A
=(−ax1+bx2+cx3−a+b+c,−ay1+by2+cy3−a+b+c)
=(−x1+x2+x3,−y1+y2+y3)
=(2+√3,7)
Excentre opposite to vertex B
=(ax1−bx2+cx3a−b+c,ay1−by2+cy3a−b+c)
=(x1−x2+x3,y1−y2+y3)
=(2+√3,3)
Excentre opposite to vertex C
=(ax1+bx2−cx3a+b−c,ay1+by2−cy3a+b−c)
=(x1+x2−x3,y1+y2−y3)
=(2−√3,5)
Now, area of an equilateral triangle
=√3a24=√3×224=√3 sq. units