If the vertices of a triangle be (am21,2am1),(am22,2am2) and (am23,2am3), then the area of the triangle is
a2(m2−m3)(m3−m1)(m1−m2)
Area = 12 ∣∣ ∣ ∣∣am212am11am222am21am232am31∣∣ ∣ ∣∣ = 12 a2 × 2 ∣∣ ∣ ∣∣m21m11m22m21m23m31∣∣ ∣ ∣∣
= a2 ∣∣ ∣ ∣∣m21−m22m1−m20m22−m23m2−m30m23m31∣∣ ∣ ∣∣ , by R1 → R1−R2
R2 → R2−R3
= a2(m22−m23)(m1−m2)−(m2−m3)(m21−m22)
= a2(m1−m2)(m2−m3)(m3−m1).
Trick: Let a = 2, m1 = 0, m2 = 1, m3 = 2, then the coordinates are (0, 0), (2, 4), (8, 8).
∴ △ = 12 ∣∣ ∣∣001281481∣∣ ∣∣ = 12(16 - 32) = 8 sq. units.