The correct option is B (x+y−7)2+(x−y+1)2=100
Given coordinates of the triangle are
A(3,4),B(5cosθ,5sinθ) and C(5sinθ,−5cosθ)
Let the circumcentre be S=(x,y).
Then SA2=SB2=SC2
Taking SB2=SC2, we get
(x−5cosθ)2+(y−5sinθ)2=(x−5sinθ)2+(y+5cosθ)2⇒−xcosθ−ysinθ=−xsinθ+ycosθ⇒x(sinθ−cosθ)=y(sinθ+cosθ) ⋯(1)
Taking SA2=SB2, we get
(x−3)2+(y−4)2=(x−5cosθ)2+(y−5sinθ)2⇒−6x−8y=−10xcosθ−10ysinθ⇒(10cosθ−6)x=(8−10sinθ)y ⋯(2)
From equation (1) and (2), we get
x=0,y=0⇒S=(0,0)
Now, the centroid G=(3+5cosθ+5sinθ3,4+5sinθ−5cosθ3)
Assume the orthocentre to be H=(h,k).
∵ Centroid (G) divides the line joining orthocentre (H) and circumcentre (O) in ratio 2:1,
G=(0+h3,0+k3)⇒(3+5cosθ+5sinθ3,4+5sinθ−5cosθ3)=(h3,k3)⇒h=3+5cosθ+5sinθ, k=4+5sinθ−5cosθ
Now, h+k=7+10sinθ
h−k=−1+10cosθ
Therefore, (h+k−7)2+(h−k+1)2=(10sinθ)2+(10cosθ)2
Hence, the locus of the orthocentre is (x+y−7)2+(x−y+1)2=100