If the volume of a parallelepiped, whose coterminous edges are given by the vectors →a=^i+^j+n^k,→b=2^i+4^j−n^k and →c=^i+n^j+3^k(n≥0), is 158 cu.units, then
A
n=9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
→b.→c=10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
→a.→c=17
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n=7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B→b.→c=10 Volume of parallelepiped =[→a→b→c]
∣∣
∣∣11n24−n1n3∣∣
∣∣=158
⇒(12+n2)−1(6+n)+n(2n−4)=158 ⇒3n2−5n−152=0 ⇒3n2−24n+19n−152=0 ⇒3n(n−8)+19(n−8)=0 ⇒n=8 ∴→a=^i+^j+8^k,→b=2^i+4^j−8^k and →c=^i+8^j+3^k →a.→c=1+8+24=33 →b.→c=2+32−24=10