If the X-coordinate of a point is twice the Y-coordinate and it is equidistant from R(2,-5) and S(-3,6) then the coordinate of point is
(16,8)
Given points are R(2,-5) and S(-3,6)
Let the required point be P(x,y) which is equidistant from both R & S.
∴√(x−2)2+(y+5)2=√(x+3)2+(y−6)2
∵ Given that x=2y substitute in above equation
⇒√(2y−2)2+(y+5)2=√(2y+3)2+(y−6)2
⇒(2y−2)2+(y+5)2=(2y+3)2+(y−6)2
⇒4y2+4−8y+y2+25+10y=4y2+9+12y+y2+36−12y
⇒2y+20=45
⇒2y=16
⇒y=8
∴x=2×8
=16
∴ coordinates of P=(16,8)