The correct option is C 254
y2−2y−4x+5=0⇒y2−2y+1=4x−4⇒(y−1)2=4(x−1)
Vertex :(1,1), Focus :(2,1)
Focal chord passes through (114,0)
Therefore, equation of focal chord is
yx−114=12−114
⇒4x+3y=11
Let a point on parabola, through which focal chord passes be (1+t2,1+2t)
∵4x+3y=11⇒4(1+t2)+3(1+2t)=11⇒(2t−1)(t+2)=0⇒t=−2,12
Therefore, the end points of the focal chord are :
(1+t21,1+2t1),(1+t22,1+2t2)
Length of chord, L=√(t22−t21)2+(2t2−2t1)2
⇒L=√(4−14)2+(−4−1)2=254