The correct option is C 0
Let the zeroes be α, β and γ.
α+β+γ=−3ba −−−(i)αβ+βγ+γα=3ca −−−(ii)αβγ=−da −−−(iii)
Now, α, β and γ are in AP.
⇒ 2β=α+γ
Substituting in Eq. (i), 3β=−3ba⇒β=−ba
Substituting in Eq. (iii),
αβγ=−da⇒(αγ)(−ba)=−da⇒αγ=db
Substituting in Eq. (ii),
β(α+γ)+αγ=3ca⇒−ba×(2×−ba)+db=3ca[∵ α+γ=2β=2×−ba] ⇒2b2a2+db=3ca⇒2b3+da2=3abc⇒2b3−3abc+a2d=0