wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If the zeros of the polynomial f(x)=x33x2+x+1 are (a-b), a and (a+b), find a and b.


Open in App
Solution

As the the coefficient of highest power x3 is1, if three roots are α,βandγ, we have

f(x)=x33x2+x+1

=x3(α+β+γ)x2+(αβ+γβ+γα)x+αβγ

Now let us compare coefficients of similar powers on each side.

First comparing the sum of roots from the coefficient of x2, we have

α+β+γ=ba

ab+a+a+b=(31)

i.e. 3a=3

i.e.a=1.

Also, coefficients of x give us the sum of the product of zeros

αβ+γβ+γα=ca=1

a(ab)+a(a+b)+(a+b)(ab)=1

i.e. a(ab+a+b)+a2b2=1

=2a2+a2b2
=3a2b2=1

and as
a=1,
b2=3×(1)21=2 and

b=±2

Further, products of roots is (ab)a(a+b)=1.

Hence, a=1 and b=±2

Note that the two values of b give the same set of roots.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relationship between Zeroes and Coefficients of a Polynomial
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon