The correct option is B −x+1
Since, there are exactly two distinct linear functions which map's from [−1,1] to [0,2].
So, Range =[0,2]
Let the required linear function be f(x)=ax+b
For a linear function f(x)=ax+b, in the interval [x1,x2],we know that
(i) range is [f(x1),f(x2)], if a>0
(ii) range is [f(x2),f(x1)], if a<0
Case I: If a>0,
f(−1)=0, f(1)=2
⇒−a+b=0, a+b=2
⇒a=1, b=1
Case II: If a<0,
f(−1)=2, f(1)=0
−a+b=2, a+b=0
⇒a=−1, b=1
∴ Required functions are f(x)=x+1 (or) −x+1