If there are two values of a which makes determinant, Δ=∣∣ ∣∣1−252a−1042a∣∣ ∣∣=86, then the sum of these numbers is
(a) 4
(b) 5
(c) - 4
(d) 9
(c) We have, Δ=∣∣
∣∣1−252a−1042a∣∣
∣∣=86
⇒1(2a2+4)−2(−4a−20)+0=86 [expanding along first column]
⇒2a2+4+8a+40=86⇒2a2+8a+44−86=0⇒a2+4a−21=0⇒a2+7a−3a−21=0⇒(a+7)(a−3)=0
a = - 7 and 3
∴ Required sum = - 7 + 3 = -4