wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If θ1 and θ2 are arguments of two non-zero complex numbers z1 and z2 respectively such that 3|z1|=4|z2|. If z=3z12z2+2z23z1, then

A
|z|=52
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Re(z)=52cos(θ1θ2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
|z|=54
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Re(z)=52cos(θ1+θ2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B Re(z)=52cos(θ1θ2)
z1=r1eiθ1, z2=r2eiθ2
z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1θ2)
Let θ1θ2=α
Since, 3|z1|=4|z2|
3r1=4r2r1r2=43
z1z2=43eiα
Similarly,
z2z1=34eiα
Now,
z=3z12z2+2z23z1 =32×43eiα+23×34eiα
z=2cosα+2isinα +12cos(α)+12isin(α)

z=52cosα+32isinα

|z|=254cos2α+94sin2α
Im(z)=32sinα
Re(z)=52cosα

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon