The correct option is B Re(z)=52cos(θ1−θ2)
z1=r1eiθ1, z2=r2eiθ2
z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1−θ2)
Let θ1−θ2=α
Since, 3|z1|=4|z2|
3r1=4r2⇒r1r2=43
z1z2=43eiα
Similarly,
z2z1=34e−iα
Now,
z=3z12z2+2z23z1 =32×43eiα+23×34e−iα
⇒z=2cosα+2isinα +12cos(−α)+12isin(−α)
⇒z=52cosα+32isinα
|z|=√254cos2α+94sin2α
Im(z)=32sinα
Re(z)=52cosα