The correct option is A 2bc+a
acos2θ+bsin2θ=c
formulaused
cos2θ=1−tan2θ1+tan2θ
sin2θ=2tanθ1+tan2θ
acos2θ+bsin2θ=c
⇒a(1−tan2θ1+tan2θ)+b(2tanθ1+tan2θ)=c
⇒a(1−tan2θ)+2btanθ=c(1+tan2θ)
⇒tan2θ(c+a)−2btanθ+c−a=0
letθ1,θ2aretherootsoftheequation
sumofroots=tanθ1+tanθ2=−(−2b)c+a=2bc+a