Let the co-ordinates of the end points of the chord of the ellipse be
P(acosθ1,bsinθ1) and
Q(acosθ2,bsinθ2).Since this being the focal chord, with out loss of generality we assume that the chord PQ passes through the focus (ae,0).
Now the equation of the chord be
y−bsinθ2b(sinθ1−sinθ2)=x−acosθ2a(cosθ1−cosθ2)
or, y−bsinθ22b(sinθ1−θ22.cosθ1+θ22)=x−acosθ22a(sinθ1+θ22sinθ2−θ12)
or, y−bsinθ2b(cosθ1+θ22)=x−acosθ2−a(sinθ2+θ12), this straight line passes through (ae,0),
then ,
0−bsinθ2b(cosθ1+θ22)=ae−acosθ2−a(sinθ2+θ12),
or, ecosθ1+θ22=cosθ2cosθ1+θ22+sinθ2.sinθ1+θ22
or, ecosθ1+θ22=cosθ1−θ22