wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If θ1,θ2,θ3,θn are in A.P, whose common difference is d, show that sec θ1 sec θ2+sec θ2 sec θ3++sec θn1 sec θn=tan θntan θ1sin d

Open in App
Solution

As θ1,θ2,θ3,θn are in A.P.
So, d=θ2θ1=θ3θ2==θnθn1(i)
Now,
LHS sec θ1 sec θ2+sec θ2 sec θ3++sec θn1 sec θn
=1cos θ1 cos θ2+1cos θ2 cos θ3++1cos θn1 cos θn=1sin d[sin dcos θ1 cos θ2+sin dcos θ2 cos θ3++sin dcos θn1 cos θn]
=1sin d[sin(θ2θ1)cos θ1 cos θ2+sin(θ3θ2)cos θ2 cos θ3++sin(θnθn1)cos θn1 cos θn] [Using (i)]
=1sin d[sin θ2 cos θ1cos θ2 sin θ1cos θ1 cos θ2+sin θ3 cos θ2cos θ3 sin θ2cos θ2 cos θ3++sin θn cos θn1cos θn sin θn1cos θn1 cos θn]
=1sin d[sin θ2 cos θ1cos θ1 cos θ2cos θ2 sin θ1cos θ1 cos θ2+sin θ3 cos θ2cos θ2 cos θ3cos θ3 sin θ2cos θ2 cos θ3++sin θn cos θn1cos θn1 cos θncos θn sin θn1cos θn1 cos θn]
=1sin d[tan θ2tan θ1+tan θ3tan θ2++tan θntan θn1]
=1sin d[tan θ1+tan θn]=tan θntan θ1sin d
= RHS


flag
Suggest Corrections
thumbs-up
21
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon