If θ1,θ2,θ3,……θn are in A.P, whose common difference is d, show that sec θ1 sec θ2+sec θ2 sec θ3+……+sec θn−1 sec θn=tan θn−tan θ1sin d
As θ1,θ2,θ3,……θn are in A.P.
So, d=θ2−θ1=θ3−θ2=……=θn−θn−1……(i)
Now,
LHS sec θ1 sec θ2+sec θ2 sec θ3+……+sec θn−1 sec θn
=1cos θ1 cos θ2+1cos θ2 cos θ3+……+1cos θn−1 cos θn=1sin d[sin dcos θ1 cos θ2+sin dcos θ2 cos θ3+……+sin dcos θn−1 cos θn]
=1sin d[sin(θ2−θ1)cos θ1 cos θ2+sin(θ3−θ2)cos θ2 cos θ3+……+sin(θn−θn−1)cos θn−1 cos θn] [Using (i)]
=1sin d[sin θ2 cos θ1−cos θ2 sin θ1cos θ1 cos θ2+sin θ3 cos θ2−cos θ3 sin θ2cos θ2 cos θ3+……+sin θn cos θn−1−cos θn sin θn−1cos θn−1 cos θn]
=1sin d[sin θ2 cos θ1cos θ1 cos θ2−cos θ2 sin θ1cos θ1 cos θ2+sin θ3 cos θ2cos θ2 cos θ3−cos θ3 sin θ2cos θ2 cos θ3+……+sin θn cos θn−1cos θn−1 cos θn−cos θn sin θn−1cos θn−1 cos θn]
=1sin d[tan θ2−tan θ1+tan θ3−tan θ2+……+tan θn−tan θn−1]
=1sin d[−tan θ1+tan θn]=tan θn−tan θ1sin d
= RHS