i)cos3θ=4cos3θ−3cosθ
LHS=cos3θ=cos(3×30∘)=cos(90∘)=0
RHS=4cos3θ−3cosθ=4cos330∘−3cos30∘=4(√32)3−3×√32=3√32−3√32=0
Hence proved, LHS=RHS.
ii)sin3θ=3sinθ−4sin3θ
LHS=sin(3×30∘)=sin(90∘)=1
RHS=3sin(30∘)−4sin3(30∘)=3×12−4(12)3=32−12=1
Hnece proved, LHS=RHS.