x=acos(θ+α).....(i)y=bcos(θ+β).....(ii)2xy=ab2cos(θ+α)cos(θ+β)
Using cos(C)+cos(D)=2cos(C+D2)cos(C−D2)
2xyab=cos(θ+α+θ+β)+cos(θ+α−θ−β)2xyab=cos(θ+θ+α+β)+cos(α−β)cos(θ+θ+α+β)=2xyab−cos(α−β)........(iii)
using (i) and (ii)
(xa)2+(yb)2=cos2(θ+α)+cos2(θ+β)(xa)2+(yb)2=cos2(θ+α)−sin2(θ+β)+1
Using cos2A−sin2B=cos(A−B)cos(A+B)
x2a2+y2b2=cos(θ+α+θ+β)cos(θ+α−θ−β)+1x2a2+y2b2=cos(θ+θ+α+β)cos(α−β)+1
Substituting(iii)
x2a2+y2b2=(2xyab−cos(α−β))cos(α−β)+1x2a2+y2b2−2xyabcos(α−β)=1−cos2(α−β)x2a2+y2b2−2xyabcos(α−β)=sin2(α−β)
is the required locus of (x,y)