wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If θ be a variable angle, find the locus of the point (x, y) when x=acos(θ+α) and y=bcos(θ+β).

Open in App
Solution

x=acos(θ+α).....(i)y=bcos(θ+β).....(ii)2xy=ab2cos(θ+α)cos(θ+β)

Using cos(C)+cos(D)=2cos(C+D2)cos(CD2)

2xyab=cos(θ+α+θ+β)+cos(θ+αθβ)2xyab=cos(θ+θ+α+β)+cos(αβ)cos(θ+θ+α+β)=2xyabcos(αβ)........(iii)

using (i) and (ii)

(xa)2+(yb)2=cos2(θ+α)+cos2(θ+β)(xa)2+(yb)2=cos2(θ+α)sin2(θ+β)+1

Using cos2Asin2B=cos(AB)cos(A+B)

x2a2+y2b2=cos(θ+α+θ+β)cos(θ+αθβ)+1x2a2+y2b2=cos(θ+θ+α+β)cos(αβ)+1

Substituting(iii)

x2a2+y2b2=(2xyabcos(αβ))cos(αβ)+1x2a2+y2b22xyabcos(αβ)=1cos2(αβ)x2a2+y2b22xyabcos(αβ)=sin2(αβ)

is the required locus of (x,y)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polar Representation of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon